Terraphim AI Agent Evolution System Architecture
Overview
The Terraphim AI Agent Evolution System is a comprehensive orchestration framework that enables AI agents to track their development over time while executing complex tasks through intelligent workflow patterns. The system combines time-based state versioning with 5 distinct workflow patterns to provide reliable, high-quality AI agent execution.
System Architecture
graph TD
A[User Request] --> B[EvolutionWorkflowManager]
B --> C[Task Analysis]
C --> D[WorkflowFactory]
D --> E{Pattern Selection}
E -->|Simple Tasks| F[Prompt Chaining]
E -->|Cost Optimization| G[Routing]
E -->|Independent Subtasks| H[Parallelization]
E -->|Complex Planning| I[Orchestrator-Workers]
E -->|Quality Critical| J[Evaluator-Optimizer]
F --> K[WorkflowOutput]
G --> K
H --> K
I --> K
J --> K
K --> L[Evolution State Update]
L --> M[VersionedMemory]
L --> N[VersionedTaskList]
L --> O[VersionedLessons]
M --> P[Agent Evolution Viewer]
N --> P
O --> P
P --> Q[Timeline Analysis]
P --> R[Performance Metrics]
P --> S[Learning Insights]Core Components
1. Agent Evolution System
The central coordinator that tracks agent development over time through three key dimensions:
graph LR
A[AgentEvolutionSystem] --> B[VersionedMemory]
A --> C[VersionedTaskList]
A --> D[VersionedLessons]
B --> E[Short-term Memory]
B --> F[Long-term Memory]
B --> G[Episodic Memory]
C --> H[Active Tasks]
C --> I[Completed Tasks]
C --> J[Task Dependencies]
D --> K[Technical Lessons]
D --> L[Process Lessons]
D --> M[Success Patterns]
D --> N[Failure Analysis]VersionedMemory
- Short-term Memory: Recent context and immediate working information
- Long-term Memory: Consolidated knowledge and persistent insights
- Episodic Memory: Specific event sequences and their outcomes
- Time-based Snapshots: Complete memory state at any point in time
VersionedTaskList
- Task Lifecycle Tracking: From creation through completion
- Dependency Management: Inter-task relationships and prerequisites
- Progress Monitoring: Real-time status and completion metrics
- Performance Analysis: Execution time and resource utilization
VersionedLessons
- Success Pattern Recognition: What strategies work best
- Failure Analysis: Common pitfalls and their solutions
- Process Optimization: Continuous improvement insights
- Domain Knowledge: Specialized learning by subject area
2. Workflow Pattern System
Five specialized patterns for different execution scenarios:
graph TD
A[WorkflowPattern Trait] --> B[Prompt Chaining]
A --> C[Routing]
A --> D[Parallelization]
A --> E[Orchestrator-Workers]
A --> F[Evaluator-Optimizer]
B --> B1[Step-by-step execution]
B --> B2[Context preservation]
B --> B3[Quality checkpoints]
C --> C1[Cost optimization]
C --> C2[Performance routing]
C --> C3[Multi-criteria selection]
D --> D1[Concurrent execution]
D --> D2[Result aggregation]
D --> D3[Failure threshold management]
E --> E1[Hierarchical planning]
E --> E2[Specialized worker roles]
E --> E3[Coordination strategies]
F --> F1[Iterative improvement]
F --> F2[Quality evaluation]
F --> F3[Feedback loops]Workflow Patterns Deep Dive
1. Prompt Chaining Pattern
Purpose: Serial execution where each step's output feeds the next input.
sequenceDiagram
participant User
participant PC as PromptChaining
participant LLM as LlmAdapter
User->>PC: Input prompt
PC->>PC: Create chain steps
loop For each step
PC->>LLM: Execute step with context
LLM-->>PC: Step result
PC->>PC: Validate and accumulate
end
PC-->>User: Final aggregated resultUse Cases:
- Complex analysis requiring step-by-step breakdown
- Tasks needing context preservation between steps
- Quality-critical workflows requiring validation at each stage
2. Routing Pattern
Purpose: Intelligent task distribution based on complexity, cost, and performance.
graph TD
A[Input Task] --> B[TaskRouter]
B --> C{Analysis}
C -->|Simple| D[Fast/Cheap Model]
C -->|Complex| E[Advanced Model]
C -->|Specialized| F[Domain Expert Model]
D --> G[Route Execution]
E --> G
F --> G
G --> H[Performance Tracking]
H --> I[Route Optimization]Use Cases:
- Cost optimization across different model tiers
- Performance optimization for varying task complexities
- Resource allocation based on current system load
3. Parallelization Pattern
Purpose: Concurrent execution with sophisticated result aggregation.
graph TD
A[Input Task] --> B[Task Decomposer]
B --> C[Parallel Task 1]
B --> D[Parallel Task 2]
B --> E[Parallel Task 3]
B --> F[Parallel Task N]
C --> G[Result Aggregator]
D --> G
E --> G
F --> G
G --> H{Aggregation Strategy}
H -->|Concatenation| I[Simple Merge]
H -->|Best Result| J[Quality Selection]
H -->|Synthesis| K[LLM Synthesis]
H -->|Majority Vote| L[Consensus]Use Cases:
- Independent subtasks that can run simultaneously
- Multi-perspective analysis (security, performance, readability)
- Large document processing with parallel sections
4. Orchestrator-Workers Pattern
Purpose: Hierarchical planning with specialized worker roles.
graph TD
A[Input Task] --> B[Orchestrator]
B --> C[Execution Plan]
C --> D[Task Assignment]
D --> E[Analyst Worker]
D --> F[Researcher Worker]
D --> G[Writer Worker]
D --> H[Reviewer Worker]
D --> I[Validator Worker]
D --> J[Synthesizer Worker]
E --> K[Quality Gate]
F --> K
G --> K
H --> K
I --> K
J --> K
K --> L{Quality Check}
L -->|Pass| M[Final Synthesis]
L -->|Fail| N[Retry/Reassign]Use Cases:
- Complex multi-step projects requiring specialized expertise
- Tasks requiring coordination between different skill sets
- Quality-critical deliverables needing multiple review stages
5. Evaluator-Optimizer Pattern
Purpose: Iterative quality improvement through evaluation and refinement loops.
sequenceDiagram
participant User
participant EO as EvaluatorOptimizer
participant Gen as Generator
participant Eval as Evaluator
participant Opt as Optimizer
User->>EO: Input task
EO->>Gen: Generate initial content
Gen-->>EO: Initial result
loop Until quality threshold or max iterations
EO->>Eval: Evaluate current content
Eval-->>EO: Quality assessment + feedback
alt Quality threshold met
EO-->>User: Final result
else Needs improvement
EO->>Opt: Apply optimizations
Opt-->>EO: Improved content
end
endUse Cases:
- Quality-critical outputs requiring iterative refinement
- Creative tasks benefiting from multiple improvement cycles
- Technical writing requiring accuracy and clarity optimization
Integration Layer
EvolutionWorkflowManager
The central integration point that connects workflow execution with evolution tracking:
graph LR
A[EvolutionWorkflowManager] --> B[Task Analysis Engine]
A --> C[Workflow Selection Logic]
A --> D[Evolution State Manager]
B --> E[Complexity Assessment]
B --> F[Domain Classification]
B --> G[Resource Estimation]
C --> H[Pattern Suitability Scoring]
C --> I[Performance Optimization]
C --> J[Cost Analysis]
D --> K[Memory Updates]
D --> L[Task Tracking]
D --> M[Lesson Learning]Data Flow Architecture
flowchart TD
A[User Request] --> B[Task Analysis]
B --> C[Pattern Selection]
C --> D[Workflow Execution]
D --> E[Resource Tracking]
D --> F[Quality Measurement]
D --> G[Performance Metrics]
E --> H[Evolution Update]
F --> H
G --> H
H --> I[Memory Evolution]
H --> J[Task Evolution]
H --> K[Lessons Evolution]
I --> L[Snapshot Creation]
J --> L
K --> L
L --> M[Persistence Layer]
M --> N[Evolution Viewer]
N --> O[Timeline Analysis]
N --> P[Comparison Tools]
N --> Q[Insights Dashboard]Persistence and State Management
erDiagram
AGENT_EVOLUTION_SYSTEM {
string agent_id
datetime created_at
datetime last_updated
}
MEMORY_SNAPSHOT {
string snapshot_id
string agent_id
datetime timestamp
json short_term_memory
json long_term_memory
json episodic_memory
json metadata
}
TASK_SNAPSHOT {
string snapshot_id
string agent_id
datetime timestamp
json active_tasks
json completed_tasks
json task_dependencies
json performance_metrics
}
LESSON_SNAPSHOT {
string snapshot_id
string agent_id
datetime timestamp
json technical_lessons
json process_lessons
json success_patterns
json failure_analysis
}
WORKFLOW_EXECUTION {
string execution_id
string agent_id
string pattern_name
datetime start_time
datetime end_time
json input_data
json output_data
json execution_trace
float quality_score
}
AGENT_EVOLUTION_SYSTEM ||--o{ MEMORY_SNAPSHOT : "has"
AGENT_EVOLUTION_SYSTEM ||--o{ TASK_SNAPSHOT : "has"
AGENT_EVOLUTION_SYSTEM ||--o{ LESSON_SNAPSHOT : "has"
AGENT_EVOLUTION_SYSTEM ||--o{ WORKFLOW_EXECUTION : "executes"Quality and Performance Metrics
Quality Scoring System
graph TD
A[Workflow Output] --> B[Quality Evaluator]
B --> C[Accuracy Assessment]
B --> D[Completeness Check]
B --> E[Clarity Evaluation]
B --> F[Relevance Analysis]
C --> G[Weighted Scoring]
D --> G
E --> G
F --> G
G --> H[Quality Score 0.0-1.0]
H --> I[Quality Gate Decision]
I -->|Pass| J[Accept Result]
I -->|Fail| K[Trigger Optimization]Performance Monitoring
graph LR
A[Workflow Execution] --> B[Metrics Collection]
B --> C[Execution Time]
B --> D[Token Consumption]
B --> E[Memory Usage]
B --> F[LLM Calls]
B --> G[Error Rates]
C --> H[Performance Dashboard]
D --> H
E --> H
F --> H
G --> H
H --> I[Optimization Recommendations]
H --> J[Resource Planning]
H --> K[Cost Analysis]Security and Privacy
graph TD
A[User Input] --> B[Input Sanitization]
B --> C[Access Control]
C --> D[Role-based Permissions]
D --> E[Workflow Execution]
E --> F[Data Isolation]
F --> G[Memory Encryption]
G --> H[Audit Logging]
H --> I[Privacy Compliance]
I --> J[Secure Output]Deployment Architecture
graph TD
A[User Interface] --> B[API Gateway]
B --> C[Load Balancer]
C --> D[Workflow Manager Instances]
C --> E[Workflow Manager Instances]
C --> F[Workflow Manager Instances]
D --> G[Evolution Storage]
E --> G
F --> G
G --> H[Persistence Backends]
H --> I[Memory Backend]
H --> J[SQLite Backend]
H --> K[Redis Backend]
D --> L[LLM Providers]
E --> L
F --> L
L --> M[OpenAI]
L --> N[Anthropic]
L --> O[Local Models]Extension Points
Custom Workflow Patterns
graph LR
A[WorkflowPattern Trait] --> B[Custom Pattern Implementation]
B --> C[Pattern Registration]
C --> D[Factory Integration]
D --> E[Automatic Selection]
B --> F[Required Methods]
F --> G[pattern_name()]
F --> H[execute()]
F --> I[is_suitable_for()]
F --> J[estimate_execution_time()]Custom LLM Adapters
graph LR
A[LlmAdapter Trait] --> B[Custom Adapter]
B --> C[Provider Integration]
C --> D[Adapter Factory]
D --> E[Runtime Selection]
B --> F[Required Methods]
F --> G[provider_name()]
F --> H[complete()]
F --> I[chat_complete()]
F --> J[list_models()]Future Enhancements
Planned Features
- Distributed Execution: Multi-node workflow execution
- Advanced Analytics: ML-powered pattern recommendation
- Hot Code Reloading: Dynamic pattern updates
- Multi-Agent Coordination: Cross-agent collaboration patterns
- Real-time Monitoring: Live dashboard and alerting
Extensibility Roadmap
timeline
title Agent Evolution System Roadmap
Phase 1 : Core Implementation
: 5 Workflow Patterns
: Evolution Tracking
: Basic Testing
Phase 2 : Production Ready
: Complete Documentation
: End-to-end Tests
: Performance Optimization
Phase 3 : Advanced Features
: Distributed Execution
: ML-based Optimization
: Advanced Analytics
Phase 4 : Enterprise Features
: Multi-tenant Support
: Advanced Security
: Compliance FeaturesThis architecture provides a solid foundation for reliable, scalable AI agent orchestration while maintaining full visibility into agent evolution and learning patterns.